50 research outputs found

    The IIASA-LUC Project Georeferenced Database of Russia. Volumes 1 and 2: Soil and Terrain Digital Database (SOTER)

    Get PDF
    The IIASA-LUC georeferenced database for the former U.S.S.R. was created within the framework of the project "Modeling Land Use and Land Cover Changes in Europe and Northern Asia" (LUC). For Russia, essential information on relief, soil, vegetation, land cover and use, etc., for routine environmental analysis was lacking when the LUC project started developing the database. In addition, the environmental data on the former U.S.S.R. which were available occurred in formats (papers, tables,etc.) that in general could not be used with modern information technology, and in particular in model building. In creating the LUC project database, we have established a threefold task: (1) to obtain the relevant information for the LUC project modeling excercises; (2) to develop data which is applicable to modern information technology; (3) to contribute a series of digital databases which could be applied for a number of other specific analyses by the national and international scientific community. In defining the tasks it was agreed to create a set of digital databases which could be handled by geographic information systems (GIS). The full set of georeferenced digital databases was combined into the LUC project's GIS, using ARC/INFO. However, each individual item (physiography, soil, vegetation, etc.) was created as a separate digital database, allowing each item to be used independently, according to user's needs. The complete set of the unique georeferenced digital databases for the territory of the former U.S.S.R. is described in the IIASA/LUC volumes: Volume 1 -- Physiography (landforms, slope conditions, elevations); Volume 2 -- Soil; Volume 3 -- Soil Degradation Status (Russia); Volume 4 -- Vegetation; Volume 5 -- Land Categories; Volume 6 -- Agricultural regionalization. The main objective of the research summarized in this report was to compile, fully correlate, and update the FAO Soil Map of the World for the territory of Russia. It originated from several discussions with Dr. W. Sombroek (FAO), R. Brinkman (FAO), R. Oldeman (ISRIC) which took place at the International Soil Reference Information Center (ISRIC) in 1988-1989. These discussions were initiated through research being carried out by the project on Global Assessment of Human-Induced Soil Degredation (UNEP/ISRIC, 1990) which urgently required reliable soil information on Russia. It was recognized that several other environment related activities were facing a similar problem. In response to the discussions, the Food and Agriculture Organization of the United Nations (FAO) launched a project in 1993. According to the Letter of Agreement (CMT 73197) signed by the FAO and Dokuchaev Soil Institute, the project was aimed at preparing "a Soil map of Russia at 1:5 million scale using the Revised Legend of the Soil Map of the World (1988) and corresponding database reflecting the information contained in the map of the same region." The Agreement defined six layers of information to be distinguished for digitizing: (1) Soil mapping unit boundaries; (2) Topographic lines (rivers, contour lines and coastal line); (3) Geographical coordinates (longitude, latitude); (4) Physiographic (landform) units; (5) Graticule of the map; (6) Province boundaries. In 1994, the requested products were completed and transferred to the FAO for digitizing by scanning. At that time, however, the compilation of a digital database could not be completed at FAO. In 1995 all materials were passed to the International Institute for Applied Systems Analysis (IIASA) with the objective to complete the database. Considerable efforts by the GIS group of the project "Modeling Land Use and Land Cover Changes in Europe and Northers Asia" at IIASA were put into checking, correcting, and linking the digital data, and making them mutually consistent. Completion of the digital database at IIASA, the first product of this kind to be published on the territory of Russia, has provided a more comprehensive understanding of the territory and its environment. Using modern GIS techniques, this knowledge is now readily available to any scientific or applied analyses of the land resources and environment of Russia

    The LUC Approach to Creating a Continental-Scale Land-Cover Database for Russia

    Get PDF
    Land cover is an essential surface characteristic of the Earth. Yet -- this may come as a surprise -- there is no generally accepted, complete and universal land-cover product for Russia, as is the problem in many other parts of the world. A review of global land-cover databases concluded that one of the most pressing problems in global climate and ecosystem studies is a lack of adequate land-cover data. This may explain why land-cover mapping often leads to debate over classification schemes, use of class descriptors and labels, and product specifications. Land-use and land-cover information is required in various forms and at different scales. A variety of techniques are in current use to collect the necessary data, ranging from census studies, ground observations, to remotely sensed data. The methodological plurality has also resulted in a widely diverse number of methods to store and present these data. In view of this unsatisfactory situation, FAO and UNEP, with the support of UNESCO and a number of other organizations, have launched an initiative on harmonizing and standardizing land-use and land-cover classification systems. Another major effort has been launched by the International Geosphere-Biosphere Programme (IGBP), to serve the needs of the global environmental change research community. The IGBP-DIS Global 1 km Land-cover Project is currently underway. The project is primarily relying on NOAA AVHRR data and aims to develop and distribute a global data-set representing land-cover in terms of seventeen broad classes. Being aware of these efforts, and aiming to be consistent with and useful to the international research community, the Land-Use Change (LUC) project at IIASA decided at an early stage to be in active contact with the research groups charged with harmonizing land-use and land-cover classifications, to use their methods and standards as they would emerge. Consequently, as regards land-cover database development, the main task of the LUC project was defined as: (i) producing a complete list of land-cover categories in Europe and Northern Asia based on available national-level data sources, and (ii) which would correspond to the diversity of land-use and land-cover of this huge territory. Charged with this task, it was necessary to develop a framework allowing to concentrate the project's efforts on these problems. The objective of this paper is to present an outline and rationale of the methodology for elaborating the project's land-cover database. Comprising the major portion of the study region, the approach has been developed on the basis of Russian experience

    ВОЗМОЖНОСТИ РАСПОЗНАВАНИЯ ПОЧВ БЕНИНА ПО СПУТНИКОВЫМ ИЗОБРАЖЕНИЯМ LANDSAT

    Get PDF
    An analysis of the possibility of using Landsat satellite data for the recognition of the most widespread soils of Benin was made. It was found that it is impossible to detect all the soils depicted on the soil map based on Landsat satellite images for the research area. More accurately, the soils developed on identical soil-forming rocks are distinguished. The revealed features of the grouping of soils by image tone characteristics are most likely due to the specific properties of the soil surface, and also to the type of vegetation growing on them. The found specifics of soil detection can be used to adjust the soil map of Benin, as well as to organize satellite monitoring of soils of the Benin Republic.Проведен анализ возможности использования спутниковых данных Landsat для распознавания наиболее широко распространенных почв Бенина. Установлено, что выделить все почвы, изображенные на почвенной карте, по спутниковым изображениям Landsat для территории исследований невозможно. Более достоверно выделяются по тоновым характеристикам почвы, развитые на одинаковых почвообразующих породах. Выявленные особенности группировки почв по тоновым признакам скорее всего связаны с особенностями свойств поверхности почв, а также с типом произрастающей на них растительности. Найденные закономерности могут быть использованы для корректировки почвенной карты Бенина, а также для организации спутникового мониторинга почвенного покрова республики

    МОРФОЛОГИЧЕСКИЙ ОТКЛИК ГОРЬКОГО МИНДАЛЯ (PRUNUS AMYGDALUS) НА АЗОТНОЕ НАНО-УДОБРЕНИЕ НА РАННИХ СТАДИЯХ РАЗВИТИЯ

    Get PDF
    The use of large quantities of chemical fertilizers caused in many harmful to humans, animals and the environment. Adding to that, the difficulty of using nitrogen fertilizers especially urea and loss a large amount of it in sandy soil (70%) by leaching. In the other side, using of nano-particles and nano-powders, can produce controlled or delayed releasing fertilizers. This strategy could be reduced leaching of fertilizers as the release occurs gradually and continuously. Hence, this experiment was conducted to study the effect of nano-fertilizer on morphological response of bitter almond rootstock at germination period and the first stages of growth compared to other chemicals fertilizers. The nuts were soaked in dis-tilled water for 48 hours. Subsequently, the seeds were sown in perlite and treated with different concen-trations of nano-fertilizer, urea and ammonium sulfate at 0%, 25%, 50% and 100% for each, then stratified at 6 C for 8 weeks. After cold stratification, non-germinated seeds were exposed to 22 C for three weeks to promote germination. Germinated seeds were sown in pots with a mixture of peat and perlite. The treatments were arranged in a randomized complete block design in factorial experiment with 3 repli-cates and 25 seeds for each replicate. The results revealed that, nano-fertilizer affected significantly on seed germination and first stages of bitter almond growth. Whereas, pre-treating seeds of bitter almond rootstock with 50% of nano-fertilizer positively increased germination measurements; germination per-centage, germination rate and index due to enhancing the amount of water that penetrates inside the seeds during the germination period which in turn improved the biological activity of stored food thus in-duced embryo to germinated early. Added to that, nano-fertilizer markedly increased stem length and diameter with producing stronger seedlings which had the tallest and deepest underground parts as well as length of primary and secondary roots/plant and number of secondary roots/plant. It can be attributed to that; nano-fertilizers are available for absorption and can provide all nutrients that required for plant growth throughout its slow release of fertilizer therefore reduce nitrogen fertilizer lost by leaching and elevate nitrogen utilization efficiency by plant comparing to other nitrogen fertilizers that are lost about 70% of its nitrogen content by leaching.Использование большого количества химических удобрений оказывает негативное влияние как на здоровье человека и животных, так и окружающую среду. Дополнительной проблемой является трудность использования азотных удобрений (мочевина) на песчаных почвах из-за их больших потерь в результате выщелачивания (70%). С другой стороны, используя наночастицы, можно достичь контролируемое или отсроченное высвобождение удобрения. Эта стратегия ведет к уменьшению выщелачивания удобрений. Наш эксперимент был проведен для изучения влияния нано-удобрения на морфологические свойства подвоя горького миндаля в период прорастания и первые этапы роста в сравнении с другими химическими удобрениями. Семена пропитывали дистиллированной водой в течение 48 часов. Затем они были высажены в перлит и обрабатывались различными концентрациями нано-удобрения, мочевины и сульфата аммония (0%, 25, 50 и 100%) для каждого. Затем семена стратифицировали при 6 C в течение 8 недель. После холодной стратификации они выдерживались при температуре 22 C в течение 3-х недель. Пророщенные семена высаживались в горшки со смесью торфа и перлита. Опыт был проведен в рандомизированном полном блочном дизайне и факториальном эксперименте в 3-кратной повторности с 25 семенами в каждой повторности. Результаты показали, что нано-удобрение значительно влияет на прорастание семян и первые стадии роста горького миндаля. Установлено, что предварительная обработка семян горького миндаля нано-удобрениями положительно увеличивает прорастание, длину и диаметр стебля, удлинение основного и вторичного корня, количество вторичных корней растений по сравнению с другими химическими удобрениями

    Геоинформационный анализ пригодности климата Мали для возделывания хлопчатника

    Get PDF
    Analysis of suitability of meteorological conditions in Mali for cotton cultivation was conducted. It has been determined that climatic conditions severely limit land usage for the cultivation of cotton in Mali. Climatic restrictions are not present only at 4% of the territory. Changing climatic conditions over the past 10 years are expressed only in a small shift of the start and end of the growing season of cotton to earlier dates and don’t affect the results of suitability analysis.Проведен анализ пригодности климата Мали для возделывания хлопчатника. Установлено, что климатические условия значительно ограничивают возможности использования земель Мали для возделывания хлопчатника. Климатических ограничений нет лишь на 4% территории. Изменение климатических условий за последние 10 лет выражается в небольшом сдвиге начала и конца сезона вегетации хлопчатника на более ранние сроки и не влияет на оценку пригодности земель

    ПРОБЛЕМА МАСШТАБА В СОВРЕМЕННОЙ ПОЧВЕННОЙ КАРТОГРАФИИ

    No full text
    One of the features of the transition from traditional soil cartography to digital technologies for compiling and using soil maps is a qualitative change in both the concept of “map” and the concept of “map scale”. A map in digital cartography is a spatially coordinated database that can consist of many layers of information and can be visualized at any scale. The scale of traditionally compiled paper soil maps is of great importance for understanding the semantic load of the map and the degree of its generalization. When using digital soil mapping, the concept of “scale” loses its meaning. This happens because the level of generalization of soil information in this case is not determined by the scale at which the map is visualized on the computer monitor or printed, but by what pixel size the map was created (in the case of raster maps) or which map served the basis for creating a vector layer of the soil map. For raster soil maps it is more logical to use the concept of “pixel size” instead of “scale”. For vector soil maps it is more important to indicate the scale of the original soil map (which was vectorized), rather than the scale of their visualization. The scale of visualization of the digital soil map is not important in the computer (digital) applied analysis of soil data. When creating raster soil maps, it is impossible to use source materials of different scales without bringing them to a unified level of generalization. All this must be taken into account when using digital soil mapping technology.Одной из особенностей перехода от традиционной почвенной картографии к цифровым технологиям составления и использования почвенных карт является качественное изменение как понятия “карта”, так и понятия “масштаб карты”. Под картой в цифровой картографии понимается пространственно-координированная база данных, которая может состоять из многих слоев информации и может быть визуализирована в любом масштабе. Масштаб традиционно составленных бумажных почвенных карт имеет большое значение для понимания смысловой нагрузки карты и степени ее генерализованности. При использовании цифрового картографирования почв понятие “масштаб” теряет свое значение. Это происходит потому, что уровень генерализованности информации о почвах в этом случае определяется не тем, в каком масштабе карта визуализирована на экране монитора компьютера или распечатана, а тем, с каким размером пикселя карта создана (в случае растровых карт), или тем, какая карта служила основой для создания векторного слоя почвенной карты. Для растровых почвенных карт более логично оперировать понятием “размер пикселя” вместо “масштаб”. Для векторных почвенных карт важнее указывать масштаб исходной почвенной карты (которая была векторизована), а не масштаб их визуализации. Масштаб визуализации цифровой почвенной карты не важен при компьютерном (цифровом) прикладном анализе почвенных данных. При создании растровых почвенных карт нельзя использовать исходные материалы разных масштабов без их приведения к единому уровню генерализованности. Все это необходимо учитывать при использовании цифровых технологий картографирования почв

    The experience of creating the RUSOTER digital database

    No full text
    General information on the Global and National Soil and Terrain Digital Data Base is presented and its structure is described. Possibilities of data transformation from Russian formats into the SOTER format are analyzed. The experience in creating the SOTER database for a pilot plot in Russia is described

    On the updating of medium-scale soil maps

    No full text
    An approach for the updating of medium-scale soil maps is discussed. It is based on the use of modern remote sensing and geoinformation technologies. The boundaries of soil polygons shown on the old soil maps and their soil contents are corrected using geoinformation analysis of modern topographic data and automated interpretation of vegetation conditions as reflected on satellite imagery. The developed methods are illustrated by the particular examples. © 2014, Pleiades Publishing, Ltd

    Spectral reflective capacity of Syrian red soils

    No full text
    Representative profiles of Syrian soils developed from red parent materials were studied. The variability in the spectral reflective capacity of samples collected from their genetic horizons was examined. The level of similarity was estimated for samples from individual profiles and for the total sample. The process of soil formation proved to cause little influence on the color of samples

    Satellite assessment of dehumification of arable soils in Saratov region

    No full text
    Possibilities of using satellite data for the evaluation of soil degradation processes on arable lands in Saratov region were analyzed. A regression model describing the relationships between the humus content in the upper layer of arable soils and their spectral reflectance was developed and applied to assess dehumification in the studied region on the basis of Landsat TM5 images. It was found that the humus content on 36.3% of test fields decreased by 1–2% in the period from 1988 to 2011. On the slopes with slightly eroded soils, the humus content decreased by 1.4–1.6% (in some cases, up to 2.5%); on the slopes with moderately eroded soils, by 1.8–2.0% (up to 2.8%). During the considered period, the area of slightly eroded soils increased by almost two times, and the area of moderately eroded soils increased by nearly three times. The most pronounced reduction in the humus content took place in the soils developed from sands, loamy sands, and sandy loams. An increase in the humus content was identified on the lower parts of the slopes (13.44% of test area), where the accumulation of the high-humus soil material eroded from the upper parts of the slopes could take place. © 2015, Pleiades Publishing, Ltd
    corecore